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1. Introdaction

A simple and effective way to exploit parallel processors for computationally intensive dis-
crete event simulations is to run multiple independent replications, in parallel, on multiple
processors and to average the results at the end of the runs. We call this the method of parallel
renlications. This paper is concerned with using the method of parallel replications for estimating
steady-state performance measures. In particular, we report on the results of queueing network
simulation experiments that compare the statistical properties of several possible estimators that
can be formed using this method. The theoretical asymptotic properties of these estimators were
determined in Glynn and Heidelberger (1989a and 1989b). Both the theory and the experimental
results reported here strongly indicate that a nonstandard (in the context of steady-state simu-
lation), yet easy to ~pply, estimation procedure is required on highly parallel machines. This non-
standard estimnator takes the form of a ratio estimator. The experiments also show that use of the

ratio estimator is advantageous even on machines with only a moderate degree of parallelism.

We remark that an alternative approach to parallel processing of simulations is distributed

simulation, in which multiple processors cooperate together to generate a single realization of the

stochastic process being simulated. For an excellent introduction to distributed simulation and a
thorough bibliography on this topic, see Fujimoto (1989). A theoretical comparison of the statis-
tical efficiencies of parallel replications and distributed simulation for estimating steady-state

parameters may be found in Heidelberger (1986).

Intuitively, when using the method of paralle] replications on a large number of processors,
one expects to get highly accurate estimates after only a relatively short amount of time.
However, there are some potentially serious statistical problems inherent in this approach, and
careful estimation procedures must be applied in order to obtain estimates with the proper (or
desired) statistical propertics. These problems basically arise because any bias effects are magni-
fied on highly parallel machines, i.e., because of the bias, one obtains highly accurate estimates of

the wrong quantity.

In the context of estimating transient performance measures (or steady-state performance
measures in regenerative simulations), these problems have been identified and addressed in
Heidelberger (1988) and Glynn and Heidelberger (1990). These papers show that nonstandard
estimators are required on highly parallel machines. Other issues related to parallel replications

for estimating transient quantitics are described in Bhavsar and [saac (1987).

For estimating steady-state performance measures, the traditional approaches (on a single
processor) are to use either the method of batch means, or independent replications with initial

transient deletion (see, e.g., Law (1977), Law and Carson (1979), Law and Kelton (1982), or
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Bratley, Fox and Schrage (1987)). When using replications, it is generally advised to use only “a
few long” replications (say 10 to 20) with deletion to reduce susceptibility to the effects of initial-
ization bias.

With the prospect of parallelism as motivation, Glynn and Heidelberger (1985a and 1989b)
have addressed, from a theoretical point of view, how one should control the number of repli-
cations (processors), the length of each replication, and the length of the initial transient deletion
interval in order to obtain valid central limit theorems for steady-state parameters. Such central
limit theorems can then be used as the basis for confidence interval formation. These papers,
which extend the single processor results of Glynn (1987 and 1990), show that valid confidence
intervals can be obtained even for a very large number of processors P (relative to the replication
length) provided the deletion interval grows appropriately and the proper (nonstandard) ratio esti-

mator is used.

On the other hand, if each processor is run for a prespecified amount of computer time c,

then it was shown that initial transient deletion does not, in fact, remove the dominant term in

the bias expansion (i.e., the term of order l/c) of the traditional (standard) independent repli-
cations estimator, a (P, ¢). In this case, the amount of simulated time generated by each processor
is a random varnable {rv) and thus the traditional estimator becomes a ratio estimator. The bias

expansion of this estimator reveals two sources of bias of order 1/c:

1. “Initialization” bias, 1.e., bias essentially due to the simulation not being started in steady-

state conditions.
2. “Ratio” bias, i.e., bias due to the fact that the denominator of the ratio estimator is a rv.

When done appropriately, initial transient deletion effectively removes the initialization bias.
However, initial transient deletion does not remove the ratio bias. The nonstandard estimator,
ap(P, ¢), corresponds to the classical ratio estimator which is typically used in sample surveys (see,
e.g., Cochran (1963)) and regenerative simulations (see, e.g., Crane and Iglehart (1975) or Iglehart
(1975)). The initialization bias (of order l/c) in ag(P, ¢) is the same as the initialization bias in
ag(P, c), but the ratio bias in ag(P,c) is P times smaller than the ratio bias in ay(P, ). Thus

initial transient deletion effectively removes all bias of order 1/c from ag(P, ¢).

The net effect of this analysis is that, when using the ratio estimator ag(P, ¢), valid ccafi-
dence intervals for steady-state parameters can be formed when very highly parallel machines
(large P) are run for a relatively short amount of time (small ¢/P). In this situation, valid confi-
dence intervals are not obtained when estimating the steady-state parameter by the traditional esti-
mator ar{(P,c). Using ap(P, ¢), valid confidence intervals are only obtained when c¢/P is very

large, i.e., when the length of each replication is la.ge with respect to the number of processors.
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We emphasize that a (P, c) and ag(P, ¢) both make use of exactly the same underlying data: they
merely average these data differently.

The purpose of this paper is to demonstrate, experimentally, that this dramatic difference
between the theoretical asymptotic behaviors of these two estimators is exhibited in sample sizes
that are not unreasonable in practice. In simulations of simple queueing systems, we show that
noticeable effects (increased bias and decreased confidence interval coverage) are present on as few
as 32 to 64 processors. Severe effects are observed on 128 or more processors. Thus, from both a
theoretical and practical viewpoint, the traditional estimator, a{P, c), should be avoided on.even

moderately sized parallel processors.

The rest of the paper is organized as follows. In Section 2, we summarize the relevant the-
oretical results from Glynn and Heidelberger (1989a and 1989b) and Glynn (1987 and 1990). In
Section 3, we describe the queueing models that we used for experimentation. In Section 4, we
describe the design of the experiments, including point and interval estimation procedures. The
results of the simulation experiments are presented in Section 5. Finally, Section 6 contains a
summary of our findings, a discussion of their relevance to traditional steady-state estimation on

single processor systems, and an indication of related future research topics.

2. Summary of Theoretical Results

The results that we quote from Glynn and Heidelberger (1989a and 1989b) and Glynn (1987
and 1990) were derived und-: reasonable, yet fairly technical assumptions. These basically involve
assumptions comcerning the existence of central limit theorems and their associated uniform
integrability (i.e., moment convergence in the central limit theorem), an exponential convergence
rate to the steady-state distribution, and certain boundedness conditions. Since a precise state-
ment of these conditions would be rather tedious (and not particuiarly illuminating for the present
purposes), we will make the simplifying assumption that the process being simulated is an irreduc-
ible, finite state space, continuous time Markov Chain (CTMC) with state space denoted by E.

Such processes automatically satisfy all of the necessary assumptions.

We let {X(s), s > 0} denote the CTMC. The parameter s denotes simulated time so that
X(s) is the state of the process at simulated time 5. There then exists a rv X such that X(s)=X
where = denotes convergence in distribution. We call X the steady-state distnbution and we shall

be interested in estimating quantities of the form a = E[{X)] for some function f.

There are P processors. Simultaneously an independent simulation of the CTMC is started
on each processor. We let X(s) denote the state of the process at simulated time s on processor i,
i=1,..,P Let T{c) denote the simulation time on processor i after ¢ units of computer time.

(The discussion in this paper also holds if ¢ is measured in units of “wall clock” time, or for that
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matter, any other way of measuring time.) Let Cfs) denote the amount of computer time

required on processor { to obtain s units of simulated time.

There are a vaniety of ways to set the run length. We will consider two reasonable and
practical approaches. In the first approach, a fixed amount of simulated time, say ¢p, is generated
on each processor. In this case, the completion time of the simulation experiment is
C(tp) = max{C;(tp), ... , Cp(tp)}, which is a rv. Since we can view {C{s), s >0} as a cumulative
process, it is reasonable to assume that each Cgip) obeys a central limit theorem, i.e. there exist

finite positive constants 4 and ¢, such that

M = o, N(O,1) (2.h
Jir
where N(0,1) denotes a normally distributed rv with mean zero and vanance one. The parameter
17" is the long run rate at which computer time is expended per unit of simulated time. Alterna-
tively, 4 is the long run rate at which simulated time is generated per unit of computer time.
Since the completion time is the maximum of iid (independent and identically distributed) rvs that
are approximately normally distributed, the expected completion time is approximately equal to
(tpld) + alﬁtpln_(P) provided ¢p and P — oo appropnately. In this expression, (¢p/4) 1s the
expected completion time of an individual processor and alm 1s the additional time until
the last processor fimishes. The factor \/2_@_)- arises as the maximum of P iid N(0,1) rvs, which
then gets multiplied by the standard deviation of an individual completion time, al\/ﬁ . Notic-
that if o = 0, then Cj(tp) = tp/4, 1.e., computer time is deterministically proportional to simulates
time and there is no completion time penalty. Since the holding time in a state (in simulated time
units) is a rv and since the amount of work (computer time) to generate a transition may depend
on the state of the system (e.g., the time to put an event on the future event list typically grows
with the length of the list), we view such proportionality as the exception, rather than the rule.
Thus, in general, the completion time penalty grows as m which is clearly undesirable.

In the second approach, we stop each simulation at exactly the same computer time, ¢. In
this approach, the completion time of the experiment is deterministic, but the amount of simu-
lated time generated on each processor, T)(c), 13 now a rv. Note that T{c) =sup{t20: C{t) < ¢},
so that {Ty(c), c >0} is the inverse process of {C{t), t=0}. We will assume that C{f) can be

represented as an integral, i.e.,

!
G = J- x(Xi(5)) ds where 0< x()<ooforalljeE. (2.2)
0
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It is well knewn that such CTMCs satisfy a bivariate central limit theorem:

T4
f(Xds) ds o
Jo| =2 e —a, =7 -1 | = NoA) 23)

where N(0,A) denotes a bivariate normally distributed random vector with means zero and
covariance matrix A. In fact, a slightly stronger version of this central lim’t theorem is valid (and
required), namely a functional central limit theorem version of Equation 2.3. See Billingsley
(1968) for a discussion of functional central limit theorems. In practice, this is not a restriction.

We next assurne that all the data generated in the first x(c) units of computer time are

deleted for the purpose of reducing initialization bias. We assume that x{c) is a deterministic
quantity. Define y{c) = T{(x(c)) to be the (random) simulated time at which processor i begins

collecting data for steady-state estimation and let

T{o)

o = | s (24
yd¢

The length of the interval in which it is assumed that the process is “in steady-state” is then
11(¢) = T{c) — y{c). The traditional steady-state simulation estimator of « (assuming we were sim-

ulating on a single processor and associating the index / with an independent replication) is

(2.5)

The above estimator is employed in most simulation packages and languages when steady-state
estimation is performed using the method of independent replications with initial transient
deletion. However, the ratio form of a {P, ¢) immediately suggests an alternative estimator, which

18 more suitable for ratio estimation:

P
2 7 Y (o)
= C

ag(P.¢) = PI = =P (2.6)

Zx',(c)

fwm]

— P P

where Y(c)=(1/P) ¥ Y(c) and 7(c)=(1/P) 3. t(c). Other simulation contexts in which such
i=1 Q=

ratio estimators have been considered are regenerative simulation (identify t{(c) and Y,(¢c) as the




length of the i-th regenerative cycle and an integral over the i-th cycle, respectively) and the
method of batch means (identify (c) and Y{c) as the length of the i-th batch and an iniegral over
the i-th batch, respectively - see Fox and Glynn (1987)). '

We begin by stating bias expansions for a{P, ¢) and ag(P, c) when ¢ = ¢p and we let P and
¢p — oo together. We first consider the case when no initial transient deletion is performed, ie.,
x(cp) = y{cp) =C. The conditions stated above are sufficient i0 guarantee the following

asyiaptotic bias expansions:

b
a + —— + oflfcp)

E[=r(P, cp] = =
@2.7)
bg
E[(ZR(P,CP)] = a + "'(; + O(I/CP)
where
(2.8)
bR = a.

The expansion for a{P, ¢) was derived in Glynn (1990) while the expansion for ag(P, c) was
derived in Glynn and Heidelberger (1989b). The precise form of the constant a is given in these

papers. Roughly speaking, we can think of a as “initialization” bias, i.e., bias because

T{c)
E[fo (fX(s) — a)ds] #0. 2.9)

The traditional estimator contains an extra bias term, — 4;5/4, which can be thought of as ratio

bias, i.e., bias because the denominator of the ratio is a rv.

To see why the bias expansions of a{P, ¢) and ag(P, ¢) differ, we give the following brief
heuristic arguments (which are made rigorous in the above mentioned papers). Notice that both
Efaf{P,cp)] and E[ag(P,cp)] can be wntten as E[A(cp)/B(cp)). Now let
e(cp) = (B(cp) — E[B(cp)])/E[B(cp)] and write

A(cp) A(cp) _ Alep) (1= e(cp) + e(cp) ...)

Bcp) —  E[B(cp)(1+e(cp) E[B(cp)]

(2.10)

Taking expectations of Equation 2.10 ytelds

6 Experiments with Initial Transient Deletion for Parallel, Replicated Steady-State Simulatons




E[ Alcp) ] _ El4cp)] _ CovlA(cp).B(cp)] .11

B(cp) E[B(c)] ~  E[B(cp)T’

For both ay(P,cp) and ag(P, cp), the initialication bias term a arises from the fact that
E[A(cp)J/E[B(cp)] = E[Yi(cp)J/E[z{cp)] # «. The ratio bias arises from the covariance term in
Equation 211 For ar (P, cp), E[B(cp)] = E[r{cp)]x A cp and
Cov[4(cp).B(cp)] = Cov[Y{cp), 1{cp)] ~ cp A Ay, by the central limit theorem in Equation 2.3
(and its uniform integrability). Thus the ratio bias for a (P, cp) 18 — A4,,/(Acp) as stated. For

ag(P, ¢p), the ratio bias is reduced by a factor of P since

Covi¥{cp) 7dcp)] _ cpA Ay

Cov[A(cp).B(cp)] = Cov[¥(cp), Fcp)] = 5 ~—p 212

Combining Equations 2.11, 2.12 and the expression for E[B(cp)] shows that the ratio bias of

ag(P, cp) is O(1/Pcp)( = o(l/cp) as P — oo).

The effect of the bias expansions of Equation 2.7 is that, without deletion, a {P, ¢p) and

«p(P, cp) obey the following central limit theorems:

Theorem 1
Let {X(s), s = 0} be ud samples of an irreducible, finite state space CTMC satisfying Equations
2.2 and 2.3. Define o° = A;; and let k(cp) = y{(cp) = 0. As P — oo,

1. If Plecp— oo, cp—ocoand br#0,then /Pcp lay(P, cp) — al=0o
2. IfPlcp—»m (0<m<oo)and by#0,then  /Pcp (ar{P, c,;) - a)=N(0, oz) + brmm.
3. I Plcp—0,then /Pcp(ap(P,cp) — a)=N(0, o?)

Theorem 2

Theorem 1 1s also valid for ag(P, cp) with bg replacing b1

Theorems 1 and 2 imply that, without deletion, one must let P/cp — 0 in order to obtain
valid confidence intervals for a, i.e., the length of each replication must be large with respect to

the number of replications {processors).

We next consider the case of asymptotically negligible deletion, ie., xp(cp) = oo but
xp(cp)/cp — 0. In this case, it is shown in Glynn and Heidelberger (1989b) that

dy
a + 7y + o(l/cp)

Elar(P. cp)]
(2.13)

Elag(P.cp)] = a + o(l/cp)




where

dp = -Z1& (2.14)

Equations 2.13 and 2.14 imply that, for a;{P, cp), initial transient deletion is effective in removing
initialization bias, but does not remove ratio bias (unless 4, = 0 in which case simulated time
and computer time are deterministically proportional). The effect of this bias expansion on the
central limit theorem for a /{P, ¢p) is that valid confidence intervals will, again, only be obtained if
Plcp— 0. On the other hand, initial transient deletion removes all sources of bias of order 1/¢cp
from the bias expansion of ag(P, ¢p). This will permit a valid central imit theorem for ag(P, cp)

even if P/cp — oo provided the length of the deletion interval does not grow too slowly.

Theorem 3

Let {X,(s),s >0} be iid samples of an irreducible, finite state space CTMC satisfying Equations
2.2.and 2.3. Assume xp(cp)/cp = 0. As P — oo,

. If Picp—co,cp— ooand dp#0,then  /Pcp lap(P,cp) — al=oo

2. IfPlcp—m (O<m<oo)and dp# 0, then  /Pcp (ap(P. cp) — a)=N(0, 0> + drm'’?.

3. I Picp—0,then /Pcp(ar(P,cp) — a)=N(0,0?)

Theorem 4
Let {Xi(s), s =0} be uid samples of an irreducible, finite state space CTMC satisfying Equations

2.2and 2.3. Assume xp(cp)/cp = 0. As P — oo, if either

1. Plcp — oo and xp(cp)/ In(P) = oo, OF
2. Plep—=m (0 < m< oo) and xp(cp) = o0, OT

then

JPep (ap(P, cp) — a)=N(0, a%) . (2.15)

The In(P) term in part (1) of Theorem 4 arises because finite state space CTMCs converge
exponentially fast to their steady-state distnibution. As indicated easlier, the bias expansions and
Theorems | - 4 are valid under more general conditions. Basically, one needs a functional version
of the central limit theorem in Equation 2.3, uniform integrability of second moments in this joint
central limit theorem, exponential convergence to steady-state, and some sort of regulanty condi-

tions on C(7) and {X(s),s=0). In Glynn and Heidelberger (1989b), it was assumed that
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C{=f (;x,(s)ds where x/(s) is bounded and that {X(s), s > 0} is a bounded regenerative process.
The regenerative assumption is not really as restrictive as it might seem since the estimation pro-
cedures do not make use of the regenerative structure. It is mainly used as a proof dcvicé, and in
addition, many stochastic processes possess a (hidden) regenerative structure (see, e.g., Glynn
(1989)). We further believe the resuit to be true for more general cumulative processes
{C{0), t = 0} where, e.g., C(¢) is discontinuous.

3. Queueing Models Used for Experimentation

In this section, we describe four queueing models that we used for determining, exper-
imentally, the behavior of af{P,c) and ag(P, ¢). These represent simplified versions of models
(with analytically tractable solutions) that often arise in simulations of computer or communi-
cations systems. We ran experiments on the waiting time process in an M/M/1 queue and on
three CTMCs: the queue length processes in an M/M/1 queue with feedback, a open Jackson

network and a closed product form network (see, e.g., Kleinrock (1975)).

For the M/M/1 waiting time simulations, we let ¢ be the arrival rate, u be the service rate,
and p = ¢/u be the traffic intensity. Let W, be the waiting time of the n-th customer. For p < I,

W,=W. The performance measure of interest 18 « = E[W]} = p/[u(l - p)].

For the M/M/1 queue with feedback, we let ¢ denote the arrival rate, u the service rate and
p the feedback probability. The expected number of visits a customer makes to the queue is
1/(1 — p) and the traffic intensity is p = ¢/[u(l — p)]. We let Q(s) denote the queue length at
(simulated) time s, including the customer in service. Then Q(s)=Q as 5 — oo provided p < 1.0.
The output performance measure of interest is the steady-state mean queue length,
a=E[Q]=p/(1—-p). We set $ =1, u=20, and p=0.9, so that p =0.50 and « = 1.0. We ran

experiments with two sets of initial conditions: Q(0) =0 and Q(0) = 5.

A diagram of the open Jackson network is shown in Figure 1. This network is sometimes
called an open central server model (see Buzen (1973)) with server 0 representing a CPU (central
processing uait), and servers 1 to 4 representing I/O devices. There is a single type of job. Jobs
arrive to the network (at the CPU) according to a Poisson process with rate ¢. All servers operate
using the FCFS service discipline and the service times of jobs at server i are iid exponentially
distributed rvs with mean 5, When a job leaves the CPU, it goes to I/O device i with probability
p;(1<i<4), and when a job leaves an I/O device, it goes to the CPU with probability p; and
exits the system with probability (1 — py). Let Q«(s) denote the queue length at server i at time s
(including the customer in service) and let p; denote the traffic intensity at server i. Provided
p;< 1, then (Qy(s), ..., Q4())=(Q;. ... . Q4) as 5 — co. Under the above assumptions, the steady-

state distribution of (Qj, ..., O;) has a product form, and in particular E[Q] = p,/(] — p;). The
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output performance measure of interest is « = E[Qy]). We set ¢ = 1.0, py =0.75, p,=0.25 for
i1, 5=0.1875 and 5,=0.50 for i> 1. With these parameters, pg = 0.75, p,= 0.50 for i > I,
a=E[Qy]=3.00, and E[Q;]=1.0 for i=> 1. This model was simulated with initial conditions
0(0) =0 forall 4.

The closed, product form queueing network model is shown in Figure 2. This model is
sometimes called a closed central server model. Again server 0 represents a CPU and servers | to
4 represent 1/0 devices. There are a fixed number of jobs N circulating in the network. As in the
open model, the service discipline is FCFS at all servers and we assume iid exponentially distrib-
uted service times with mean s; at server i. When a job leaves the CPU, it goes to I/O device i

with probability p; and when a job leaves an /O device it goes back to the CPU. Let Qys)

denote the queue length at server i at time s (including the customer in service) and let p; denote
the steady-state utilization of server i. Then (Qy(s), ... , Qa()=(Qy. .-, Q) as s = co. The per-
formance measure of interest ts « = E[Qy]. We set N=10, p;=03for 1 <i<3, p,=0.1, 5= 10,
5;=20 for 1<i<3, and 55 =11.0. With these parameters, py =0.82, p,=0.49 for 1 <i<3,
pa =090, a =E[Qy] =3.06, E[0] =092 for ] <i<3, and Q; =4.17. This model was simulated
with initial conditions Qn(0) = 6 and Q;(0) =1 for i = 1.

Because we did not have convenient access to a very highly parallel machine, all exper-
iments were run on a single processor. The effect of running parallel replications on multiple
processors with a computer time stopping constraint was simulated as follows. For the queue
length processes, we assumed that each event (external armival or service completion) took one
unut of computer time to process. Thus Cy(¢) is the number of events completed at simulated time

t (on replication i) and Ty(c) is the amount of simulated time generated after processing ¢ events.

For the M/M/1 waiting tume simulations, we let C{¢) be the arnival time of customer
number ¢ and T(c) be the number of customers that arrive in the interval (0,c). In this example,
the integrals in Equations 2.3 and 2.4 get replaced by sums. Using these definitions for C i(f) and
T{c) allows the ratio bias term dr to be calculated analynca.lly, as follows. Let W, = Z Wyin be
the average waiting time of the first n customers and let 4, = }"_ Aln be the averagé motera.mval
time of the first n customers. Note that A,, = C(n)/n. Since T,(n)/n — ¢ (the arrival rate), in this

example we have ¢ = 1. We also have

JR (W, = a, 4,-1"") = N©OB) 3.
for some covariance matrix B. By Theorem 5 of Glvnn and Heidelberger (1989b), B and A (the
covariance matrix in Equation 2.3) are related by A, = B,;/A, 4, = — ABy;, and 45, = 13822.

Thus by Equation 14, dr= B, (= — 4;,/4). All the terms of B can be explitly calculated (we
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set u=1) By =p[2+5p — 4,02 + px]/(i - ,o)4 (see, e.g., Blemqvist (1967) or, more recently,
Wit (1989)), By, = Var[4,] = 1/4%, and, by using regenerative process theory (see, e.g., Crane
and Iglehart (1975))

Cov( (Y;—aN) (- A7'N) 1

B|2 = F,{/V‘] (32)

where ¥, is the sum of the waiting times in the i-th regenerative cycle, ¢ is the sum of the interar-
nval times i the i-th cycle and N, 1s the number of armvals in the i-th cycle. Now
E[N]=1/(1 — p), while the covanance term in Equation 3.2 can be calculated from results con-
tained in Lavenberg, Moeller and Sauer (1977) (the research report version of Lavenberg, Moeller
and Sauer (1979)). (This covanance term anses in the context of control vanables for simulation
vanance reduction.) Specifically, for M/G/1 queues
Cov[(Y;—aN} . (4 = NJAOY] = - b/[2() - p)J] where b, 15 the second moment of the service
times. Since, for M/M/1 (with u=1) b, = 2, Equation 3.2 reduces to dr= B, = — 1/(1 - o).

The effect of ratio bias on confidence interval coverage can now be calculated analytically.
Let ®(x) = P{¥(0,1) < x} and define z5,, by ®(z5,) = 1 — 6/2. From part 2 of Theorem 3, of
Picp=m,and § =dr/m| A, , then

P{JPcp lap(P.cp) = allJAyy Sz55) = P{UNOL) + 81 < 245}
= 0(26/2 -B) — D~ 2512 — B) .

(3.3)

Thus for any given p, P, and ¢p, the actual coverage of presumed 100 x (1 — §)% confidence
intervals can be predicted. In Section 5, we will compare the predicted coverage with the actual
coverage observed in simulation experiments. Note that by using the heavy traffic approximation
B, = 4p/(l — ,o)4 (see Whitt (1989)) we obtain § = —0.5\/;_. This approximation also works
well for moderate values of p. Thus for given P and cp, we expect the loss in coverage due to
ratio bias to be apprroximately independent of the traffic intensity (provided p is not too small and
P and cp are large enough that the central limit theorem is valid). This behavior will be observed

in Section §S.

4. Design of the Simulation Experiments

In this section we describe how the simulation experiments were performed. As mentioned
earlier, the effect of running parallel replications on multiple processors with a computer time
stopping constraint was simulated on a single processor. For the vanous models, and different

values of P, ¢ and x(c), we were interested in estimating the mean, vanance and confidence




interval coverage of ar(P, ¢) and ax(P, ¢). We built a simple queueing network simulator suitable
for these purposes. (We used the combined generator described in L'Ecuyer (1988) as a source of
random numbers.) To esiimate these quantities for givea valves of P, ¢, and x(c), M “super repli-'

cations” were performed where each super replication consisted of P replications, each of length ¢

and having truncation irterval x(c). Thus for super replication j (1 </ < M) samples a{P,c, ) and

ag(P,c,f) of ag(P.c) and ap(P,c), respectively, were obtained (according to Equations 2.5 and 2.6).
E[a{P,c)] and Ef[ag(P,c)] were estimated by apnPo)= g ar(P,c,)iIM  and
ag(P.c)= g ag(P.c, )/IM, respectively. The sample standard dewiations, ‘S=T(1P,c) and Sz(P.c) of
ar(P.c) ‘:nZi ag(Pc), respectively, were computed in the usual way, eg
S}Pe) = (ar(Pic.) = EPOVILMM - )

On each super replication we also obtained asymptotic standard deviation estimates
6(P.c,/) and ag(P.c,j) for a (P, c) and ag(P, c), respectively. These were estimated as follows.
L2t Y{c.)) and 7/(c,/) be the samples of Y(c) and 7,(c) obtained on the j-th super replication.

Then

2 [ Yde) 2
ACJ
=1< ey o 'C"))

P—1

]

6XPc.j) = 4.1)

Computation of ox(P.c, ;) is analogous to variance estimation tn regenerative simulation:

P
LN (Ve - 2apPre) Ve whed) + an(Pre i) <e )
i=1

S}a(P,C,j) = vi . (4.2,

(—}l; i (¢, /) )

i=1

From these puint and variance estimates, presumed 100 x (1 — §)% confidence intervals for a can
be formed as follows. Using the traditional estimator the confidence interval is
ag(P.c,j) £ t52(P - I)GT(P,C,/)/JF where tsa(P—1) is defined by
1-6/2=P{Tp_, S t55(P~ 1)} and Tp_ has a Student’s t distribution with (P — 1) degrees of
freedom. Using the classical ratio estimator the confidence interval is
ag(P.c, ) + 26/23R(P,c,/)/\/7. For a given estimator, we define its coverage to be the fraction of
these confidence intervals that actually contain «. If valid confidence intervals are being formed
for «, then, by definition the coverage should converge to (1-6) as M — oo. In all cases we set

6 = 0.1 corresponding to 90% confidence intervals.
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The simulator was organized in such a way that statistics could be collected for multiple
values of P, ¢ and x(c) from the same set of runs. Thus the data generated for a particular model
are correlated. We took values of P to be powers of two, ranging from P=8to P = 512 for the
CTMCs and P =128 to P = 1024 for the M/M/] waiting time simulations. Eack super repli-
cation for P processors also comprised 2 super replications for P/2 processors, 4 super replications
for P/4 processors, etc. We used 200 super replications for the largest values of P in each case.
Thus, e.g., 12,800 super replications of the CTMCs were obtained fcr P = 8. These sample sizes

were generally large enough so that very accurate point estimates were obtained.

5. Experimental Results

The first set of experiments are for the M/M/| waiting times. The purpuse of these exper-
iments is to compare the analytic results of Section 3 to actual simulation results. To isolate just
the effect of the ratio bias, these simulations were started in the steady-state distribution. We
simulated until (simulated) time ¢ = 1,000. By deleting customers arnving before times «(c) = 100,
250 and 500, we obtained runs of effective lengths ¢ — x(c) = 900, 750 and 500, respectively. We
simulated at p = 0.50 and p = 0.75.

The results of these experiments are listed in Table |. Table 1 lists the predicted coverages
for a (P, ¢) as calculated by Equation 3.3 (usingt.  fective run length for ¢ in that equation), as
well as the actual coverages for a{P, ¢) and ag(P, ¢) observed in the simulations. Table | indi-
cates generally excellent agreement between the predictions and the experiments. Notice that, for
given P and x(c), the predicted and actual coverage for a (P, c) is quite insensitive to the value of
p, as explained in Section 3. In addition, for fixed x(c), as P increases the coverage for a (P, ¢)
decreases. This is in agreement with part 2 of Theorem 3 and is explained by the fact that as P
increases, increasingly accurate estimates of (the biased) E[a (P, ¢)] are obtained. This loss in
coverage is greatest for the largest value of x(c) since that corresponds to the smallest effective run

length. On the other hand, the coverage for « R(P,'c) stays close to its nominal value of 0.90.

Figures 3 to 5 plot results from simulations of the M/M/1 queue v ¢ feedback. Figure 3
plots @{P,c) and agx(P,c) as a function of x(c) for ¢ = 1000 events, P =512, and two different
initial queue lengths. Actually, when Q(0) =0, a(P, ¢) appears almost unbiased without trun-
cation (x(c) = 0), but a4(P ) increases above the steady sta.e value of a = 1.0 as x(c) wncreases.
In this case, the initialization bias and ratio bias are of opposite signs and, in effect, approximately
cancel each other out when x(c) = 0. When Q(0) = 5, §/(P,c) decreases as x(c) increases, but,
again, does not come close to a. For x(c) = 500 the values of a{(P,c) are very nearly the same for
both Q(0) = 0 and Q(0) = S, but are about 8% above the steady-state value. On the other hand,

ag(P.c) approaches a as x(c) increases for both Q(0) = 0 and Q(0) = 5. These point estimates are
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very accurate. For example, when (X0) = 0 and x(c) = 500, a{512,c) = 1.084, S{(512,c) = 0.002,
ag(512,c) = 1.002 and Sg(512,c) = 0.002.

Figure 4 plots the coverages for these estimators (without deletion) as a function of P.
Because, by coincidence, E[a (P, c)Jxa when Q(0) =0 and x(c) =0, the coverage for ar{P, ¢
remains at or near the nominal value of 0.90. However, the coverage for ar{(P, c) decreases (to
zero) as P increases when Q(0) = 5 because of the stronger initialization bias. Similarly, because
of initialization bias, the coverage for ag(P,c) is seriously degraded for both Q(0)=0 and
0(0) = 5.

Figure 5 shows the coverages when x(c) = 250. With this value of x(c), the initialization bias
is essentially eliminated, although ratio bias is still present: for example, when Q(0) =S,
ag(512,c) = 1.004 compared to a = 1.0 while @{512,c) = 1.060. Because of the ratio bias, the cov-
erage for a (P, ¢) decreases from around 0.90 to less than 0.20 as P increases from 8 to 512 for
both 1nitial conditions. Significant coverage loss begins to be observed in the range from P = 32
to P =64. On the other hand, the coverage for ag(P, ¢) starts out slightly below 0.90 for P = 8
and then rapidly approaches 0.90 as P increases. The low coverage when P = 8 is due both to a
less robust variance estimate as well as to the use of a normal multiplier, rather than a
t-multiplier, in the confidence interval. For example, when Q(0) =0 and a t-multiplier with 7
degrees of freedom is used instead of the normal multiplier, the coverage for agx(8,P) increases

from 0.820 to 0.864.

Figures 6 and 7 display results of simulating the open central server model. This network
was simulated for ¢ = 2500 events. Figure 6 plots a{(P,c) and dg(P,c) as a function of x(c) for
P =8, 64 and 512. (Because of the organization of the simulator’s data collection facilities,
ar(P.c) is independent of P.) Initialization bias is essentially eliminated by x(c) = 1000, but signif-
icant ratto bias is still evident in @{P,c). Note also that there are only slight differences between
aR(8,c), ag(64,c) and @g(512,c). Because of the initialization bias, without deletion, the coverage
for both a{P,c) and ag(P,c) are well below the 0.90 level: the coverage for ay(64,c) is 0.627
while the coverage for ag(64,c) is 0.457. Note that when x(c) = 250, a{P, c) is, by chance, almost
unbiased. Thus, with this amount of deletion, the coverage for ay{(P, ¢) will be (approximately)
correct, but for the wrong reason. For example, a{512,c) has coverage 0.91 while ag(512,c) has

coverage of only 0.60.

Figure 7 plots the coverages for a (P, ¢) and ag(P, ¢) as a function of P when initialization
bias is essentially removed (x(c) = 1000). Again, the coverage for ay(P, ¢) decreases as P increases,

while the coverage for ag(P, ¢) increases to and then remains at or near the nominal 0.90 level.

Figure 8 displays a similar pattern for simulations of the closed central server model. This

figure plots coverage results when ¢ = 2000 and x(c) = S00. With these parameters, initialization
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bias is removed but ratio bias is still present. The steady-siate value beiny estimated is a = 3.057,
and 3g(512,c) = 3.056 (Sg(512,¢) = 0.002) while 7(512,¢) = 3.111 (S4{512,¢) = 0.002).

As has been indicated several times above, for given values of P, ¢ and x(c), the values of
S7{P.,c) and Sg(P,c) have been very nearly the same. This has been observed throughout our
experiments. This is explained by the fact that, even with ratio bias still present, a{P, ¢) and
ag(P, ¢) both obey central limit theorems with the same asymptotic standard deviation (see Theo-

rems 3 and 4).

6. Summary and Conclusions

This paper has considered the problem of estimating steady-state parameters on multiple
processors via the method of parallel replications. While the method is conceptually straightfor-
ward to apply, statistical considerations point to the need for using an alternative steady-state esti-
mation procedure. This need arises because the traditional estimator, ay{P, ¢), contains two
sources of bias having the same order of magnitude: initialization bias and ratio bias. While
appropnate deletion of an 1nitial portion of each simulation effectively removes initialization bias,
it does not affect the ratio bias. When using a large number processors, this residual ratio bias

results in a biased estimate and corresponding loss in confidence interval coverage.

The alternative estimator, ag(P, ¢), corresponds to the classical ratio estimator that is com-
monly used in regenerative simulation. Its ratio bias is order P times smaller than its initialization
bias. Thus appropnate deletion is effective in removing the major source of bias. The net effect

is that by using ap(P, ¢) rather than a{P, ¢) allows one to either:
1. use many more processors for a given amount of computing time per processor, or
2.  make shorter runs for a given number of processors.

This paper examined these issues empirically via simulations of a vanety of queueing
systems. Qur expeniments confirm the theoretical results, and indicate that the ratio bias can

become a problem even on moderately sized parallel processors with, say, 32 to 64 processors.

The results of this paper also have some applicability to the standard single processor
method of independent replications. In this method, the replication length is often determined by
either the total number of events, a simulated time limit, a computer time limit, or the number of
events of a particular type such as the number of departures from a queue. (Sometimes a combi-
nation of these limits is used.) When estimating many parameters in a queueing network, there
will always be some parameters that are estimated on a different time scale than that used to
determine the replication length. Thus the denominator of some parameter estimates will be

random, resulting in ratio bias. For example, if simulated time is used to control the replication




length, then response time estimates will have a random denominator (the number of customers
departing from the queuve). On the other band, if an event count is used to control the replication
length, then queue length estimates will have a random denominator (the simulated time). Thus
ratio bias could be a concumn, even on a single processor. However, there is usually little moti-
vation to run a very large number of short replications on a single processor, since either batch
means or a running few long replications will be less sensitive to initialization bias. Never-the-
less, the issue of ratio bias should be kept in mind. In fact, for a small number of replications, the
ratio form of ag(P, c) suggests the use of jackknifing (see Miller (1974)) for both (ratio) bias
reduction and for robust variance estimation. However, the properties and validity of jackknifing
in this situation have not yet been established, and remain as open problems for research.

In addition, if the replication length is determined within a sequential procedure (see, €.g.,
Law and Kelton (1982)), then the denominator of the estimates will typically be random resulting
in possible ratio bias. This will also be true if the length of the truncation interval is determined
by statistical tests of the simulation output (see, e.g., Schruben (1982)). The effect of ratio bias in

these situations also has vet to be analyzed.
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in M/M/1 Queue Waiting Time Simulations with ¢ = 1000

Table 1

Predicted and Actual 90% Confidence Interval Coverages

p =05 p = 0.75
¢ — x(c¢) P Predicted  Actual Actual Predicted  Actual Actual
ar(P, ) ar(P, c) ag(P. c) ar(P, ) ap(P, c) agp(P, o)
500 128 0.888 0.874 0.894 0.889 0.871 0.898
256 0.876 0.856 0.892 0.878 0.862 0.908
512 0.852 0.848 0.909 0.856 0.875 0912
1024 0.806 0.795 0.930 0813 0.850 0.920
750 128 0.892 0.888 0.903 0.893 0.885 0.898
256 0.884 0.876 0.894 0.885 0.882 0.902
512 0.868 0.870 0.900 0.871 0.870 0.912
1024 0.837 0.845 0.915 0.842 0.865 0.950
900 128 0.893 0.886 0.900 0.894 0.882 0.898
256 0.887 0.881 0.880 0.888 0.876 0.896
512 0.874 0.880 0.900 0.876 0.865 0.912
1024 0.847 0.855 0.930 0.851 0.870 0.920
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